Analysis of a Multilevel Iterative Method for Nonlinear Finite Element Equations*
نویسندگان
چکیده
The multilevel iterative technique is a powerful technique for solving the systems of equations associated with discretized partial differential equations. We describe how this technique can be combined with a globally convergent approximate Newton method to solve nonlinear partial differential equations. We show that asymptotically only one Newton iteration per level is required; thus the complexity for linear and nonlinear problems is essentially equal.
منابع مشابه
Analysis of a Multilevel Iterative Method for Nonlinear Finite Element Equations
The multilevel iterative technique is a powerful technique for solving systems of equations associated with discretized partial diierential equations. We describe how this techniques can be combined with a globally con-vergent approximate Newton method to solve nonlinear partial diierential equations. We show that asymptotically only one Newton iteration per level is required; thus the complexi...
متن کاملA New Stress Based Approach for Nonlinear Finite Element Analysis
This article demonstrates a new approach for nonlinear finite element analysis. The methodology is very suitable and gives very accurate results in linear as well as in nonlinear range of the material behavior. Proposed methodology can be regarded as stress based finite element analysis as it is required to define the stress distribution within the structural body with structural idealization a...
متن کاملDynamics Analysis of the Steady and Transient States of a Nonlinear Piezoelectric Beam by a Finite Element Method
This paper presents a finite element formulation for the dynamics analysis of the steady and transient states of a nonlinear piezoelectric beam. A piezoelectric beam with damping is studied under harmonic excitation. A numerical method is used for this analysis. In the paper, the central difference formula of four order is used and compared with the central difference formula of two order in th...
متن کاملA new approach for nonlinear vibration analysis of thin and moderately thick rectangular plates under inplane compressive load
In this study, a hybrid method is proposed to investigate the nonlinear vibrations of pre- and post-buckled rectangular plates for the first time. This is an answer to an existing need to develope a fast and precise numerical model which can handle the nonlinear vibrations of buckled plates under different boundary conditions and plate shapes. The method uses the differential quadrature element...
متن کاملCoupling Nonlinear Element Free Galerkin and Linear Galerkin Finite Volume Solver for 2D Modeling of Local Plasticity in Structural Material
This paper introduces a computational strategy to collaboratively develop the Galerkin Finite Volume Method (GFVM) as one of the most straightforward and efficient explicit numerical methods to solve structural problems encountering material nonlinearity in a small limited area, while the remainder of the domain represents a linear elastic behavior. In this regard, the Element Free Galerkin met...
متن کامل